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Note 

Accelerated Convergence of the Steepest Descent 
Method for Magnetohydrodynamic Equilibria 

1. INTRODUCTION 

Recently, a steepest-descent moment method [l] has been implemented for 
determining magnetohydrodynamic (MHD) equilibria. In Ref. [l] the Fourier 
amplitudes (R,, , Z,, ) of the cylindrical coordinates (R, 4, Z) were discretized on a 
radial mesh. The resulting system of moment equations was solved using a descent 
algorithm to obtain the magnetic flux coordinate mapping. 

In this paper, the s-algorithm [2] is considered as a technique to accelerate the 
convergence rate of the steepest-descent method. The improved convergence rate of 
geometric sequences given by the e-algorithm is well known. However, the relevance 
of this method specifically for the MHD equilibrium problem, and more generally 
in conjunction with the descent equations, has not been previously discussed. 

The steepest-descent equations may be represented by the recursion relation: 

O;‘X(n)= -AW{X(n)}. (1) 

Here, X denotes the vector of discrete field amplitudes. For the MHD problem, 
X = {R,m, Z,,}. The A notation symbolizes the gradient-difference operator for the 
positive definite energy functional W, and 0, ci) is a first (i = I)- or second (i = 2)- 
order linear opertor. Here, n assumes the role of a discrete time variable. The vector 
sequence X(n), n = l,..., generated by the iteration of Eq.( 1) may be decomposed as 
follows: 

X(n) = X,(n) + X,,(n) + X,(n). (2) 

Here, the dominant asymptotic limit of X(n) corresponds to the geometric vector 
sequence, 

Xg(n)=X, + 2 Ajr7E.I 9 
j= I 

Pa) 

where X, is the stable equilibrium limit. The asymptotically vanishing nonlinear 
correction X,, is at least of second order, X,,(n + co) N 0( IX, (n) - X, I ‘). The 
error term X,(n) contains the effects of round-off and truncation error. If this term 
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is random, it should not produce numerical stability problems in the application of 
the s-algorithm. 

In Eq. (3), rj are the complex characteristic roots of the linearized version of 
Eq. (1). They are related through a dispersion relation to the eigenvalues dj of the 
Jacobian matrix J G -V* W(X, ) evaluated at the equilibrium. Ej are the eigenvec- 
tors associated with L? The eigenvalues of J are negative for a stable equilibrium, 
ljE [l-lAlmax~ -IIZlmin12 and for the MHD energy functional W they satisfy [ 11 
the stiffness property 6, = %,,,/‘;l,i,+ 1. 

The goal of any acceleration scheme is to use a finite subset of the sequential data 
X(n), n = I,..., generated by Eq. (1) to predict the desired equilibrium value X,. 
Consider the application of the scalar &-algorithm to each component of the vector 
geometric sequence, Eq. (3a). A typical component of Eq. (3a) has the form 
(m<m,) 

(X,),(n)rS,=S,+ f rY.,r;‘. (4) 
j= I 

It is known [3, 43 that for geometric sequences of the form given by Eq. (4) any 
successive 2m + 1 elements S,,..., SntZm can be used to determine S, (the 
generalized Shank transform). However, because the theory makes use of Hankel 
determinants, it is impractical for computing with stiff systems. An alternative 
recursive nonlinear scheme [S], the a-algorithm, also yields S, after a finite num- 
ber of operations involving 2m + 1 successive S, members. Because of its recursive 
structure, the a-algorithm is appropriate for stiff systems. The basic recursion 
relation is 

E(‘) 
k+l 

=$~f,‘)+ [Ep+U-eii)]-l, j = O,...; k = 0 ,..., (5a) 

&(q = 0 &b” = Sj, for all j. (5b) 

It can be proven [6] that if the parent geometric sequence satisfies certain minimal 
conditions then the k = 2m column, .$!,, will have the limiting value S 

For stiff systems, a large number of iterations, N, of Eq. (1) is requiredmto attain a 
single e-folding of the smallest characteristic root in Eq. (4), regardless of the order 
of 0:). In particular [l], N(i)%0.5(6,)‘i’ for i= 1,2. Alternatively, it is possible to 
use 2m + 15 NC’) successive sequence members { S,}in the E-algorithm [Eq. (5)] to 
obtain S, directly. Since many e-foldings are generally required to obtain S, by 
direct iteration alone, the use of the epsilon algorithm in this context can be very 
economical. 

Depending on the distribution of characteristic roots [for O(“] or amplitudes 
[for OC2’] contributing to the parent sequence, considerable sequence acceleration 
may be manifested by columns of the s-algorithm of even order less than 2m. This is 
apparent from the explicit form of the scalar algorithm of even order [7] 
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Here, C&Y denotes the set of all distinct permutations of length k taken from a set of 
length m; and pI is the subscript of the Ith term in the particular permutation com- 
prising Qp. Note that a;+ i is the null set, so that .#, = S, as required. 

For first-order systems, the fact that all of the characteristic roots in Eq. (3) have 
distinct moduli leads to the following asymptotic form for s&J: 

j-o3 L lim E -‘)-SW + O(r;l+ ,). (7) 

This estimate was obtained by noting that the dominant contributions to the 
numerator and denominator of Eq. (6) arise from terms containing the product of 
roots with the largest modulus. Recalling the root ordering in Eq. (3), it is apparent 
that each successive even e-column converges faster than the preceding one and, in 
particular, faster than the parent sequence (the k = 0 column of the s-algorithm). 

For second-order central difference schemes [l] the characteristic roots of 
Eq. (3) have the same modulus, rj = /?1’2 exp (8,) where p-1 --E and s~d;‘/*<l. 
Although the theorem E p; = S, still pertains, the asymptotic behavior of the even E- 
columns will differ from that of first-order systems as given by Eq. (7). Nevertheless, 
some convergence improvement may be anticipated even for the 2k -C 2m s-column, 
based on a smooth asymptotic approach (for increasing k) to the limiting value S,. 
The numerical results in Section 3 also seem to confirm this expectation. 

2. NUMERICAL STABILITY 

Since the s-algorithm is applied in practice to a sequence [Eq. (2)] that involves 
numerical perturbations of the exact asymptotic geometric sequence S,, it is 
relevant to assess the numerical stability of the algorithm. One approach is to per- 
turb an individual L-~/I element and to generate the corresponding perturbations of 
sjji i and sjJ1 2 as given by the recursive algorithm, Eq. (5). In this manner [S] the 
following stability criterion for the relative error, 6 p)- I&sjj)l/j@(, is obtained (for 
s, # 0): 

lim6”) -R 2kf2- k+l%? 
j-m 

R -Irk+112/11-rk+!12~1. k+l- 

(8) 

Clearly Rk + , < 1 is desirable for stability and corresponds to either Re (rk ) < 0 or 
Irk ( < 4.’ From Ref. [ 11, it is clear that (r k max 11, regardless of a first- or second- I 
order formulation. Because of stiffness, it is also generally not possible to find 
explicit finite difference schemes for 0:) in Eq. (1) with all characteristic roots 
satisfying - 1 < Re (rk ) < 0. Nevertheless, by preconditioning the iterative scheme, 

1 Also note that in addition to Eq. (8) one must also have the usual condition IrkI -c 1. 
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it may be possible [9] to obtain effective characteristic roots that do satisfy 
Re (rk ) < 0 for all k. 

If there were a preponderance of roots with negative real parts, then the majority 
of steepest-descent-generated sequences should be consistent with the sequence 
stability conditions. Some preliminary indications of this favorable root distribution 
are provided by the estimate Inl$& N {No. of radial mesh points} [ 11. Thus, the 
eigenvalues of V* W in Eq. (1) are expected to be packed closer to - IA\,,, rather 
than to - /AImin. The additional observation that for both first- and second-order 
systems the optimum 0;) corresponds to roots satisfying’ Re [r( - lnl,,,)] = 
-Re [r( - l,%l,i,)] < 0 would support the expectation that the majority of steepest 
descent sequences are stable with respect to an s-algorithm analysis. 

An alternative interpretation of the above is that the E-algorithm is more stable 
for nonmonotonic sequences, Re (rk) < 0, than for monotonic ones. For the latter, 
R k+ I < 1 can be satisfied by taking appropriate subsequences of the parent 
sequence. Consider S,* = SC,,,,, n = 1, 2,.... By selecting I so that 

(9) 

or Z1:0.7N(“, it is clear that the corresponding e-algorithm will be numerically 
stable. The example presented in the next section corresponds to this situation. 

3. NUMERICAL EXAMPLE 

In Ref. [ 1 ] the following second-order operator was used in Eq. (1): 

o’*,X ~x(n+l)+X(n-l)-2X(n)+X(n+1)-X(n-1) 
(n) At* 2TAt ’ (10) 

The magnetic axis was treated accurately by adopting a Galerkin expansion for the 
m = 0 Fourier component of the radial inverse coordinate R(p, 8, q5), 

Ron(p) = RP + C d&*), 
k=l 

(11) 

where L, are Legendre polynomials. Now consider the application of an E- 
algorithm analysis to the steepest-descent sequences for u1 and u2. Two possible 
second-order theories have been considered here. One of these corresponds to keep- 
ing r and At fixed (nonoptimized situation). The other involves prescribing optimal 
5 values [ 11. It will be seen that application of the e-algorithm to the first set of 
data, which proceeds to 3000 iterations, yields better results than the optimized r- 

2 For first-order operators, rk = 1 - 11, [At, where At is chosen optimally so that max (rk ) is minimized 
with respect to k, i.e., AP’= 2/(l4,,, + [AImin) z 2/[4,,,. Hence, rk ( - llzl ,.,) N - 1. For second-order 
operators, a similar argument applies; see Handy [9]. 

581/60/Z-12 
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varying situation at 4000 iterations. (Application of the s-algorithm to the latter 
data set is invalid because of the variation of r during the iteration.) Table I 
corresponds to the nonoptimized (r = const.) case. The parent sequence, up to 3000 
iterations, is given in intervals of 100 iterations. At 3000 iterations, 
U, = -5.147 x lo-* and u2 = -9.332 x 10P3. Because of the monotonic nature of 
the sequence, a subsequence analysis of the type discussed in the preceding section 
was implemented. Accordingly, using the expression I-0.7N’2’ and the estimate 
[ 1 ] iV(*) = 2r/At yields I= 90 for At = 0.04 and r -’ = 0.4. The corresponding E- 
algorithm analysis is represented in Table 3. Note the predicted values 
u1 = -5.128 x lo-* and u2 = -9.50e x 10P3. 

These latter values for ui and u2 compare well with those generated from an 
optimized (r-varying) second-order forkulation as presented in Table II. At 3000 
iterations, ui’p’ = - 5.132 x lo-* and @Pt = - 9.457 x 10P3, which are consistent 
with the s-algorithm estimates. Indeed, the results contained in Tables II and III at 
3000 iterations are far better converged than the corresponding entries of Table I. 
However, one can see that the results of the s-algorithm actually surpass those of 
the optimized second-order code (Table II), because already on the basis of 3000 
iterations of the Table I code the s-algorithm predicts a reasonably stable limit 
value for both ui and u2. In contrast, the data in Table II show that u2 does not 

TABLE I 

Nonoptimized, Second-Order Steepest-Descent Sequence for uI and uZ 

Number of iterations 

1000 -5.475 (x 10-Z) 
1100 - 5.425 
1200 - 5.387 
1300 - 5.353 
1400 - 5.323 
1500 - 5.294 
1600 - 5.271 
1700 - 5.253 
1800 - 5.236 
1900 ~ 5.221 
2000 - 5.208 
2100 -5.197 
2200 -5.186 
2300 -5.180 
2400 -5.173 
2500 -5.166 
2600 -5.161 
2700 -5.157 
2800 -5.153 
2900 -5.150 
3000 -5.147 

-6.135 ( x 10-j) 
-6.716 
-7.163 
- 7.480 
- 7.748 
- 7.997 
- 8.208 
- 8.386 
- 8.542 
- 8.677 
-8.791 
- 8.889 
- 8.974 
- 9.047 
-9.109 
-9.162 
- 9.208 
~ 9.246 
- 9.279 
- 9.308 
- 9.332 
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begin to asymptote until at least 4000 iterations. There is some indication that the 
ultimate limit for u2 will be less than the -9.469 x 10m3 entry and perhaps will even 
approach the s-algorithm estimate of -9.50 x 10P3. 

It will be noted from the data in Table III that the a-algorithm data for U, are 
slightly more susceptible to resonance effects than that of u2. This is because the 
original parent sequence for U, , as given in Table I, already converges much faster 
than that of u2. Thus, considering Eq. (4) one can see that if two successive 
elements satisfy E?+ ‘) = E( ) h kJ t en the ensuing recursively computed expression &pi, 
will be singular. Clearly, round-off error makes such infinities anomalously large. 
Theoretically, one can regulate away [lo] such potential infinities. In practice, one 

TABLE II 

Optimized Second-Order, Steepest-Descent Parent Sequences for u, and u2 

Number of 
iterations 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 

2900 
3000 
3100 
3200 
3300 
3400 
3500 

3700 
3800 
3900 
4000 

-5.488 (x lo-‘) -6.006 ( x 10-j) 3.940 (x 10-I) 
~ 5.430 - 6.624 3.060 
- 5.368 -7.289 1.779 
- 5.306 - 7.885 2.358 
~ 5.259 - 8.269 5.453 
- 5.235 - 8.477 1.351 
-5.212 - 8.728 2.084 
-5.191 - 8.984 1.141 
-5.161 - 9.207 5.803 
-5.152 - 9.260 6.503 
-5.152 - 9.279 3.673 
-5.150 -9.315 3.970 
-5.144 -9.352 2.951 
-5.141 - 9.376 3.165 
-5.139 - 9.395 3.665 
-5.137 -9.412 2.077 
-5.135 ~ 9.428 1.518 
-5.134 -9.441 4.211 
-5.133 - 9.450 4.007 
-5.132 - 9.454 1.312 
-5.132 - 9.457 1.586 
-5.132 -9.461 2.228 
-5.132 - 9.464 5.863 
-5.131 - 9.465 3.277 
-5.131 - 9.466 5.838 
-5.131 - 9.467 3.896 
-5.131 - 9.468 3.311 
-5.131 - 9.468 8.63 1 
-5.131 - 9.469 6.143 
-5.131 - 9.469 2.589 
-5.131 - 9.469 2.798 
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may ignore them, provided they have no deleterious effects on successively higher- 
order columns of the &-algorithm ansatz. This is clearly the behavior of both u1 and 
u2, as given in Table III. 

TABLE III 

E-Algorithm as Applied to Data of Table I, for u, and u2, Respectively 

E2 

-5.243 (x lo-*) 
- 5.064 
- 5.098 
-4.453 
-5.183 
-5.188 
- 4.947 
-5.109 
-5.124 
-5.137 
- 5.148 
-5.116 
-5.124 

9.999 ( x 105) 
-5.149 
-5.141 

7.206 ( x 106) 
-5.141 

-8.654 (x10-j) 
- 8.253 
-9.214 
-1.126 ( x lo-*) 
-9.380 
-9.346 
- 9.648 
-9.545 
-9.410 
-9.500 
-9.530 
-9.491 
- 9.458 
- 9.474 
-9.510 
- 9.427 
- 9.497 
-9.518 

- 5.006 
- 5.055 
-5.139 
-5.139 
-5.112 
-5.165 
-3.002 ( x 105) 

3.603 
-5.136 
-5.153 
- 5.087 
-5.112 
-5.134 
-5.135 

-9.190 
-9.502 
-9.523 
-9.521 
- 9.494 
-9.491 
-9.487 
- 9.494 
- 9.479 
- 9.485 
- 9.488 
- 9.474 
- 9.473 
- 9.470 

-5.128 
-5.128 
-5.128 
- 5.129 
-5.130 
-5.122 
-5.127 
-5.128 
-5.129 
-5.127 

- 9.526 
-9.509 
-9.485 
- 9.489 
- 9.489 
- 9.489 
-9.486 
- 9.484 
-9.481 
- 9.470 

-5128 
- 5.128 
- 5.128 
- 5.128 
-5.128 
-5.128 

-9.491 
-9.518 
-9.485 
-9.491 
- 9.492 
- 9.490 

- 5.128 
- 5.128 

- 9.499 
-9.510 
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